Bifurcation Analysis of a Circuit-Related Generalization of the Shipmap

نویسندگان

  • Federico Bizzarri
  • Marco Storace
  • Laura Gardini
چکیده

In this paper a bifurcation analysis of a piecewise-affine discrete-time dynamical system is carried out. Such a system derives from a well-known map which has good features from its circuit implementation point of view and good statistical properties in the generation of pseudo-random sequences. The considered map is a generalization of it and the bifurcation parameters take into account some common circuit implementation nonidealities or mismatches. It will be shown that several different dynamic situations may arise, which will be completely characterized as a function of three parameters. In particular, it will be shown that chaotic intervals may coexist, may be cyclical, and may undergo several global bifurcations. All the global bifurcation curves and surfaces will be obtained either analytically or numerically by studying the critical points of the map (i.e. extremum points and discontinuity points) and their iterates. In view of a robust design of the map, this bifurcation analysis should come before a statistical analysis, to find a set of parameters ensuring both robust chaotic dynamics and robust statistical properties.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Generalization of Canonical Correlation Analysis from Multivariate to Functional Cases and its related problems

In multivariate cases, the aim of canonical correlation analysis (CCA) for two sets of variables x and y is to obtain linear combinations of them so that they have the largest possible correlation. However, when x and y are continouse functions of another variable (generally time) in nature, these two functions belong to function spaces which are of infinite dimension, and CCA for them should b...

متن کامل

BIFURCATION ANALYSIS OF A DDE MODEL OF THE CORAL REEF

‎In this paper‎, ‎first we discuss a local stability analysis of model was introduced by P‎. ‎J‎. ‎Mumby et‎. ‎al‎. ‎(2007)‎, ‎with $frac{gM^{2}}{M+T}$ as the functional response term‎. ‎We conclude that the grazing intensity is the important parameter to control the existence or extinction of the coral reef‎. ‎Next‎, ‎we consider this model under the influence of the time delay as the bifurcat...

متن کامل

Bifurcation analysis and dynamics of a Lorenz –type dynamical system 

./files/site1/files/0Abstract1.pdfIn this paper we consider a continues Lorenz – type dynamical system. Dynamical behaviors of this system such as computing equilibrium points, different bifurcation curves and computation of normal form coefficient of each bifurcation point analytically and numerically. In particular we derived sufficient conditions for existence of Hopf and Pitchfork bifurcati...

متن کامل

Vibration and Bifurcation Analysis of a Nonlinear Damped Mass Grounded System

In this paper, vibrations and bifurcation of a damped system consists of a mass grounded by linear and nonlinear springs and a nonlinear damper is studied. Nonlinear equation of motion is derived using Newton’s equations. Approximate analytical solutions are obtained using multiple time scales (MTS) method. For free vibration, the approximate analytical results are compared with the numerical i...

متن کامل

Frequency–driven chaos in the electrical circuit of Duffing-Holmes oscillator and its control

Accurate detection of weak periodic signals within noise and possibility of secure messaging have made Duffing oscillator (DO) highly important in the field of communication. Investigation on the properties of DO is thus ardently sought for. An elegant approach to accomplish the same is to fabricate electronic circuit simulating DO non-linear equation and to study the effect of input signal amp...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • I. J. Bifurcation and Chaos

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2006